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Simulating Marine Snow Images: Pipeline, Data Set,
and Benchmark

, Tianshun Han
Sergio Escalera

Yiqing Huang

Abstract—Marine snow causes light spots and veil-like blurs in
underwater images due to scattering and degrades their quality.
Therefore, removing this type of noise from underwater images
is necessary. However, the lack of valid and diverse marine snow
image data sets has impeded the development of machine learning-
based algorithms. To tackle this issue, we propose a pipeline named
OmniMSI for generating marine snow images. This pipeline takes
into account the diverse morphologies of marine snow particles
and their natural distribution patterns. Specifically, OmniMSI ini-
tiates from collecting large-scale marine snow particle images in
natural environments, classifying them by morphology, analyz-
ing their distribution patterns, and thus creating diverse marine
snow masks. The pipeline then overlays the masks on real-world
underwater images without marine snow and employs the de-
signed post-process to synthesize marine snow images. Leveraging
this pipeline, we create a Multi-morphology and Multidistribution
Marine Snow image Dataset (MM-MSD), including 6000 pairs of
marine snow images and corresponding reference images. We also
present a novel marine snow removal method—marine snow-aware
diffusion, which can accurately estimate the location of marine
snow in images and remove it progressively. Based on MM-MSD, we
conduct a comprehensive study of the state-of-the-art algorithms
qualitatively and quantitatively, developing a new benchmark for
marine snow removal. The benchmark evaluations demonstrate
the performance and shortcomings of existing algorithms, paving
the way for further research in marine snow removal. The data set
and code will be released.
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1. INTRODUCTION

ARINE snow is comprised of multimorphology par-
Mticles that aggregate from organic and inorganic im-
purities present in water bodies [1]. As shown in Fig. 1, it
typically appears as light spots or veil-like blurs in underwa-
ter images [2], a phenomenon collectively called the “marine
snow effects” [3], [4]. Underwater images with marine snow
usually suffer from noticeable visibility degradation and object
occlusion, hindering the development of a range of underwater
visual tasks (e.g., underwater object detection [5] and underwa-
ter target tracking [6], [7]). Therefore, the research on marine
snow removal is crucial for improving the quality of underwa-
ter images and the performance of related underwater visual
tasks.

Deep learning provides an effective method to remove marine
snow from images. However, the performance of such data-
dependent methods is affected by the training data sets. This
bottleneck arises primarily from the scarcity of valid and diverse
marine snow image data sets. As shown in Table I, there are
several shortcomings of the existing marine snow image data
sets as follows.

1) Oversimplifying marine snow effects: Initial attempts [3],
[4], [8] to represent the marine snow effects in data sets
often simplify them to noise by directly adding noise
points to underwater images. Such simplified data sets
fail to present the nuanced appearance of the marine snow
effects, causing algorithms trained on them to struggle
with processing real-world images due to the complexity
of these effects.

2) Underestimating marine snow morphology: Subsequent
research [9], [10] concerns various morphologies of
marine snow particles. However, their construction ap-
proaches, which model marine snow effects through math-
ematical or generative models, also struggle to display
the complex morphological characteristics of marine snow
particles. This is partly because they only use a few real
marine snow images for observation and model training,
limiting the model’s ability to replicate authentic marine
snow effects. In addition, these strategies still aim to gen-
erate and utilize synthetic marine snow particles, which
significantly differ from real-world data.
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Fig. 1.
in the red boxes.

TABLE I
STATISTICS OF EXISTING MARINE SNOW IMAGE DATA SETS, INCLUDING THEIR
CONSTRUCTION APPROACH, IMAGE COUNT (#IMG.), PARTICLE MORPHOLOGY
COUNT (#MORPH.), DISTRIBUTION PATTERNS COUNT (#DIST.), AND DATA SET
AVAILABILITY (#AVAIL.)

‘ #Img. ’ #Morph.

Data set #Dist.  #Avail.
Adding Noise Points to Underwater Images

Banerjee et al. [3] - - - No

Jiang et al. [8] 6600 - - No

Wang et al. [4] 2100 - - No

Modeling Marine Snow Effect on Underwater Images

MSRBD [9] 5400 - (2 types) 1 Yes

Galetto et al. [10] 18846 - - Yes

Adding Real Marine Snow Particles to Underwater Images

Hodne et al. [11] 3941 - - Yes
MMSD [12] 1436 - (5 types) 3 No
Zhao et al. [13] 16500 - - No
MM-MSD (ours) 6000 [>1 M (5 types) 10 Yes

3) Neglecting marine snow distribution: Recent efforts [11],
[12], [13] improve data sets by employing real-world ma-
rine snow particle images, though they still fail to capture

Samples of marine snow effects in a real-world underwater image. Some light spots are marked in the yellow boxes and some veil-like blurs are marked

their diverse morphologies and distribution patterns in
nature. In fact, marine snow has a wide range of morpholo-
gies and distribution patterns. These differences depend on
factors like ocean location, depth, and season [1]. There-
fore, this oversight results in a lack of ecological realism
in the data sets. Moreover, lots of existing data sets are not
available to the public, leading to data scarcity that im-
pedes the development of marine snow image processing.

The above shortcomings highlight the need for valid and

diverse marine snow image data sets. However, constructing
such a data set is challenging because it requires not only
the representation of diverse marine snow morphologies but
also their distribution patterns across ocean areas, depths, and
seasons. The distinct vertical and seasonal variations specific
to each ocean area require vast data collection and analysis.
To resolve these issues, we develop a generic pipeline (called
OmniMSI) rather than a single data set, which could be applied
to broad ocean areas, depths, and seasons. As shown in Fig. 2,
our pipeline contains the following four steps:

1) Raw data preparation: EcoTaxa! offers a large amount
of real marine snow particle data, which includes in-situ
images, taxonomic information, morphological features,
and collection details like time and depth. Our pipeline
sets a precedent by fully utilizing this raw data. In addi-
tion, the open-source underwater image data sets (such as
SUN [14], UIEB [15], and EUVP [16]) provide different
underwater scenes for the data set construction.

2) Morphotype classification and distribution pattern analy-
sis: Despite the extremely diverse morphological charac-
teristics, marine snow particles share certain similarities,
enabling us to classify them into specific morphotypes.

![Online]. Available: https://ecotaxa.obs-vifr.fr
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Fig. 2.
(3 diverse mask generation, and (4) authentic image synthesis.

Moreover, the abundance of each and all morphotypes
varies with ocean area, depth, and season. Therefore, our
pipeline leverages these features to first classify marine
snow particles via clustering, then analyze the spatio-
temporal distribution, and select typical cases as support-
ing data for subsequent simulations of the real distribution
of marine snow.

3) Diverse mask generation: Based on the above analysis,
our pipeline in this step generates diverse marine snow
masks to simulate realistic marine snow effects, and the
marine snow particles from different morphotypes are
all organized on the masks guided by the distribution
patterns.

4) Authentic image synthesis: In this step, our pipeline over-
lays the marine snow masks on real-world underwater
images without marine snow. Then it applies the designed
post-process, Gaussian blur and dynamic blur, on them to
simulate the backscattering effect and motion streaks in
the real marine snow scenes.

Utilizing our pipeline, we classify 1085506 marine snow
particle data into five morphotypes and identify ten distribution
patterns to construct our data set. It comprises 6000 pairs of
marine snow images and corresponding reference images and is
named Multimorphology and Multidistribution Marine Snow im-
age Dataset (MM-MSD). Then, we propose a novel marine snow
removal method—~Marine Snow-Aware Diffusion (MSADIff),
which contains two key components: a marine snow estimator
(MSE) for estimating multimorphology and multidistribution
marine snow particles, and a marine snow remover for removing
them and restoring the image details. Based on MM-MSD, we
conduct a comprehensive study of the state-of-the-art algorithms

classified morphotypes of marine snow particles

© Diverse Mask Generation

data set samples

spatial-temporal distribution variation trend

post-process

overlay

generated masks

Overview of our OmniMSI pipeline, which contains four steps: (1) raw data preparation, (2) morphotype clustering and distribution pattern analysis,

qualitatively and quantitatively, developing a new benchmark for
marine snow removal.

In summary, the main contributions of this article can be

summarized as follows.

1) Pipeline: To the best of the authors’ knowledge, we are the
first to propose a pipeline for making marine snow images.
Researchers can leverage our pipeline to build diverse and
authentic marine snow images for different applications.

2) Data Set: We construct a marine snow image data set MM-
MSD featuring multimorphology and multidistribution for
marine snow image processing.

3) Method: We design a novel method MSADiff trained on
MM-MSD for marine snow removal, removing marine
snow effects while restoring the image details.

4) Benchmark: With the MM-MSD, we conduct a compre-
hensive study on state-of-the-art algorithms from qualita-
tive to quantitative evaluations for marine snow removal.

II. RELATED WORK

A. Marine Snow Image Data Sets

In this part, we mainly review the image data sets that can be
used for marine snow image processing (see Table I). In the be-
ginning, many marine snow image data sets were constructed by
adding noise points to underwater images. Specifically, Banerjee
et al. [3] regarded marine snow effects as a form of impulse
noise, characterized by tiny sparkling dots, and simulate them
as isolated noise points of 2 to 3 pixels in underwater images.
Following that, Jiang et al. [8] used photoshop to add spot
noise with different densities and orientations to underwater
images. Also, inspired by a rain streaks synthesis method [17],
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Wang et al. [4] simulated marine snow effects as Gaussian noise
on their captured video frames. However, the above data sets
only consist of noisy images rather than marine snow images
because of the oversimplification of marine snow effects.

With attention and observation of the various morphologies
of marine snow particles, researchers try to model marine snow
effects on underwater images. As a representative, in MSRB
Data Set (MSRBD) [9], the marine snow effects feature two dis-
tinct 3-D mathematical models of marine snow particles, where
these two particle types appear on each image with a distribution
ratio of 7:3. After that, to replicate the complex morphological
characteristics, Galetto and Deng[10] generated marine snow
particles on underwater images by using a generative adversarial
network (GAN). However, these data sets still underestimate
marine snow morphology and use fake marine snow particle
data to simulate marine snow effects.

Recently, some data sets have been constructed by utilizing
real marine snow particle images. Hodne et al. [11] selected
marine snow frames with untextured backgrounds and extract
marine snow particles from them, then overlay them onto the
synthetic underwater data set VAROS [18]. Their published
data set is named Snowy-VAROS. Zhao and Li[13] turned to
an image-blending method to make the extracted marine snow
particles well-integrated into the underwater images. However,
they only used ten real marine snow images to serve as raw
data. Guo et al. [12] chosed to download some in-situ images
of marine snow particles from EcoTaxa, manually defined 3
distribution patterns, and overlaid them onto underwater im-
ages. Nevertheless, they dismissed the diverse morphologies
and distribution patterns of marine snow particles. To solve the
above issues, we consider diverse morphologies and different
distribution patterns of marine snow particles and propose a
generic synthesizing pipeline.

B. Marine Snow Removal Methods

Banerjee et al. [3] thought the marine snow effects resemble
impulse noise caused by power equipment, and proposed an
adaptive probabilistic method based on a median filter to remove
them. Endorsing marine snow as a significant noise source of
underwater images, Farhadifard et al. [19] proposed a supervised
median filtering scheme tailored to the specific properties of the
bright spots caused by marine snow. After that, Jiang et al. [8]
applied deep learning algorithms to the marine snow removal
task. They proposed a deep learning network employing GAN
with skip connections, self-attention, and spectral normalization
to remove marine snow from underwater images. Serving as
a sub-task of underwater image enhancement, Wang et al. [4]
introduced a local residual learning module for marine snow
removal in the high-frequency image layer. Motivated by the
success of the attention mechanism, Zhao and Li [13] proposed
an attention-guided denoising network to detect and remove
marine snow particles under a two-stage training strategy. All of
the above methods are designed based on denoising methods,
without focusing on the properties of marine snow effects.
Therefore, we propose a novel marine snow removal model
that can remove marine snow effects clearly. The details will
be described in Section IV.

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 50, NO. 4, OCTOBER 2025

III. PIPELINE AND DATA SET

A. OmniMSI Pipeline

In this section, we detail the proposed pipeline for making
marine snow images considering multimorphology and multi-
distribution. We call our pipeline OmniMSI as it is designed to
encapsulate comprehensive marine snow information (“Omni’)
within the generated marine snow images. It consists of four
steps: (1) raw data preparation, (2) morphological type clustering
and distribution pattern analysis, (3) diverse mask generation,
and (4) authentic image synthesis. The input of OmniMSI is
marine snow particle data and real-world underwater images
without marine snow, and the output is synthesized marine snow
images. Each step is explained as follows.

(D Raw Data Preparation: Reviewing previous marine snow
image data sets in Section II, we identify two fatal flaws in their
marine snow particle data: lack of realism [3], [4], [8], [9], [10]
and lack of diversity [11], [12], [13]. The former is simulated
fake marine snow particles, while the latter fails to capture the
diverse morphologies and distribution patterns among different
ocean areas, depths, and seasons. Meanwhile, the insufficient
diversity of underwater scenes also impacts their ultimate quality
and visual representation. Based on these observations, we set
two goals for preparing raw data in this step: One is large-scale
marine snow particle data with diverse morphology, from vari-
ous depths and across different seasons. Another is real-world
underwater images that comprise various image contents and
different degrees of degradation.

The EcoTaxa platform has made a significant contribution
towards the first goal. As mentioned in Section I, EcoTaxa is
a web platform that comprises millions of images uploaded
by researchers worldwide. Projects in EcoTaxa are exhibited
on the global map as position markers, with project managers
setting access permissions to regulate data sharing. Within these
projects, every image is automatically annotated with taxonomic
information, morphological characteristics like size and shape,
as well as collection details including geographic coordinates,
times, and depths. Notably, marine snow particle datain EcoTaxa
is classified under “nonliving” except for “bubble,” which is
the primary focus of our OmniMSI. Therefore, the first step
is to download a project of interest from EcoTaxa and select
the marine snow particle data from it. For the second goal, we
suggest making use of published underwater image data sets
(like UIEB [15]) to select underwater images without marine
snow, prioritizing real and unprocessed ones with diverse visuals
that cover a wide range of underwater scenes and degradation
features.

(@) Morphotype Clustering and Distribution Pattern Analysis:
Although marine snow particles vary widely in their appearances
and structures, they have similar morphological characteristics.
Therefore, in this step, we leverage principal component analysis
(PCA) and the unsupervised K-means clustering algorithm to
analyze their morphological characteristics and classify them
into different morphotypes.

First, according to the work done by Trudnowska et al.
[1], we select the morphological characteristics from three as-
pects: 1) size, which is most intuitive that related to geometric
measures for figuring particles; 2) shape, which reflects the
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TABLE II
24 MORPHOLOGICAL CHARACTERISTICS USED FOR MARINE SNOW CLUSTERING, THEIR MORPHOLOGICAL DIMENSIONS, AND THE NORMALIZATION PROCESSES

# Char. # Desc. # Dim. # Norm.
area surface area of the object in square pixels size logq trim(z)
perim. perimeter of the outside boundary of the object size log trim(z)
major primary axis length of the best-fit ellipse (secondary axis length named minor) size logq trim(z)
feret maximum Feret diameter within the object size log o trim(x)
fractal fractal dimension of object boundary size trim(z)
skelarea surface area of skeleton in pixels size logq trim(z)
circ. circularity of the object — (4 * 7 * area) /perim.? shape trim(x)
symetrieh bilateral horizontal symmetry index shape logq trim(z)
symetriev bilateral vertical symmetry index shape logq trim(z)
thickr thickness ratio shape  In(1 + trim(z))
elongation  aspect ratio of the object — major/minor shape logq trim(x)
mean average grayscale value of all pixels within the object (maximum value named max)  texture trim(z)
mode modal grey value (most frequently occurring gray value) texture trim(z)
intden sum of grayscale values of all pixels within the object — area * mean texture logq trim(z)
median median grayscale value within the object texture trim(x)
slope slope of the grey level normalized cumulative histogram texture logq trim(z)
range the range from min gray values to the max texture trim(z)
%area percentage of object’s surface area that is comprises holes texture  In(1 + trim(z))
stddev standard deviation of grayscale values texture trim(z)
skew skewness of the grayscale histogram texture trim(z)
kurt kurtosis of the grayscale histogram texture trim(z)
meanpos balance of pixel intensity distribution — (maxz — mean)/range texture trim(x)
cv coefficient of variation of the grayscale histogram — (stddev/mean) * 100 texture trim(z)
sr relative standard deviation of grayscale histogram — (stddev/range) x 100 texture trim(x)

In the description column (# Desc.), formulas following the vertical bar are provided for easy understanding. In the normalization procedure column (# Norm.), “trim(x)” means we trim

0.1% extreme values before normalizing.

geometric form, external boundary, or surface; 3) texture, which
is mainly related to grayscale values of pixels that reflect the
degree of transparency, the underline ones indicate the properties
of the grayscale histogram. Table II presents the selected 24
morphological characteristics that meet the above standards,
detailed along with their descriptions, associated morphological
dimensions, and specific normalization procedures. Then, the
finally selected morphological characteristics are trimmed and
normalized to ensure that no single one dominates the clustering
process due to scale differences.

After that, PCA is used to transform the 24 original features
into principal components, which can select more representa-
tive characteristics. Furthermore, we apply K-means cluster-
ing on the selected principal components to obtain different

morphotypes of marine snow particles. The optimal number
of clusters (K value) is determined by the Gap Statistic [20]
method due to its ability to objectively assess the optimal
clustering number by comparing the within-cluster dispersion
with the expected value under a null reference distribution. It
is important because of the inherent ambiguity and potential
visual subtlety of the true cluster count within marine snow
particles. In our MM-MSD, we finally use the top-4 principal
components to cluster 5 morphotypes of marine snow particles
for data set construction. Details are displayed in Section III-B
as our pipeline mainly focuses on the outline of steps.

In terms of different morphotypes, the abundance of each
exhibits variations by depth and seasons. Therefore, we further
analyze and define distinct spatial-temporal distribution patterns
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across morphotypes, depths, and seasons, by identifying sig-
nificant feature points—those locations where the abundance
changes obviously. Specifically, in a specific season, we group
the depth by 10-m intervals. This is predicated upon the fact
that the raw data sample depths, as mentioned in [21], were
typically measured at every 5 m within the range from O to
30 m and at every 10 m from 30 to 100 m. In order to ensure
easy reproducibility of our study, we selected the lowest com-
mon multiple of these measurement intervals, which is 10 m.
Subsequently, we statistics the abundance of each morphotype
into a variation trend chart, then point out the depth where
obvious compositional changes occur. After that, we record the
compositions of each morphotype at these subsequent broader
depth intervals and calculate a proportion for each morphotype
until all combinations are cataloged. The recorded compositions
and the proportions are used to quantify different distribution
patterns. Note that while this step is specific to a specific season,
the analysis process remains consistent across different seasons.

(3 Diverse Mask Generation: Based on the above analy-
sis, this step focuses on using marine snow particle images
to simulate realistic marine snow effects to generate diverse
marine snow masks, guided by the qualified distribution pat-
terns. Particularly, translucent marine snow particles manifest as
veil-like blurs in underwater images, while opaque or minimally
translucent particles appear as light spots. Therefore, we first
preprocess all marine snow particle images to achieve a certain
level of transparency using their grayscale values as transparency
indicators. Subsequently, guided by the qualified distribution
patterns, we set values randomly in the variation ranges to
determine the number of marine snow particles on each mask.
Lastly, we generate marine snow masks by placing the processed
particles on a blank background while randomly adjusting their
sizes and rotation angles to increase the diversity of masks,
creating realistic visualizations of distribution patterns.

(#) Authentic Image Synthesis: In this step, we first align
the sizes of the marine snow masks and real-world underwater
images and overlay the former on the latter by applying this
equation:

I=M+U(1— M/255.) (1)

where I denotes synthesized marine snow image, M denotes
generated mask, and U denotes real-world underwater image.
Our OmniMSI also provides two postprocessing technologies
to achieve more natural visualizations: 1) Applying Gaussian
blur on the coarsely synthesized images to simulate the enhanced
backscattering effect attributed to the tiny marine snow particles.
2) Applying a dynamic blur to replicate the relative motion
between the capturing device and the movement of the water
body. These technologies are instrumental in approximating the
actual capture conditions and the distinct marine snow effects,
where particles closer to the camera appear clear yet still influ-
enced by the relative motions. It further improves the realism
of marine snow images by accurately reflecting the interaction
between light and marine snow particles in the underwater
environment. Note that each marine snow mask can be applied
to one specific underwater image to simulate a particular marine
snow scene (one-to-one) or to multiple underwater images to

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 50, NO. 4, OCTOBER 2025

represent a consistent marine snow effect across different scenes
(one-to-many).

B. MM-MSD Data Set

In this section, we construct a new marine snow image data
set using our OmniSMI pipeline. Note that all the selections of
parameters are optional. Readers can select as needed according
to our following steps. Initially, we select a project located in
the Arctic Ocean from EcoTaxa® and obtain 1 085 506 marine
snow particle data under the “nonliving” taxonomy. As noticed
above, we excluded the “predicted,” “artifact,” and “duplicate”
subsets, as they are caused by underwater devices rather than
marine snow particles. Then, we employ PAC to transform the
24 selected characteristics into principal components. Table IIT
presents the top-10 principal components and their contributions
to variance, providing a reference in selecting the most informa-
tive features for further classification. To balance between model
simplicity and sufficient data variance retention, we utilize the
top-4 components as the primary features that account for over
86% of the variance in the 24 morphological characteristics.

As mentioned above, when determining the optimal number
of clusters, we mainly rely on the results of the Gap Statistic,
because of its ability to objectively evaluate the optimal clus-
tering number by comparing the within-cluster dispersion with
the expected value under a null reference distribution. In this
case, with the Top-4 principal components, the optimal value of
K is 5. As a result, as shown in Fig. 3, we classify the marine
snow particles into five morphotypes. Specifically, the particles
in Type A particles have a relatively small size and moderately
regular shape, with many approximating circular or triangular
forms. They are fully opaque, with few surface cavities, and exist
in a tight cluster to form a stable aggregate. Type B particles
are unique in size and transparency. They are quite large, with
extremely irregular and randomly extending edges. Their struc-
tures are the most sparse among all the morphotypes and look
like large flocculent aggregates. Composed of small particles
with significant transparency differences, they show a mottled
transparency effect. Type C particles’ linear and elliptical shapes
are prominent, making them easily distinguishable. Type D
particles are mostly transparent but not uniformly, with some
hazy regions like gauze. Their loose structure and relatively
consistent texture have minimal transparency variation within a
particle and are mostly flocculent. Type E particles are markedly
smaller, with the most regular shape, mostly in a compact cluster.
They have low overall transparency and a uniform texture. It
is important to note that higher grayscale values correspond
to brighter areas in the synthesized images of marine snow.
As a result, in our synthesized marine snow images, Type A
and Type E usually appear as light spots, while others typically
appear as veil-like blurs. Then, we qualify the abundance of
each morphotype across different seasons. As illustrated by the
simplified spatio-temporal distribution variation trend in Fig. 2
(2), the concentration of marine snow particles varies to different
extents as time progresses. Notably, several common turning

2[Online]. Available: https:/ecotaxa.obs-vIfr.fr/prj/ 149
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TABLE III
Top-10 PRINCIPAL COMPONENTS (# PC) OF THE 24 MORPHOLOGICAL CHARACTERISTICS, INCLUDING EACH COMPONENT’S EIGENVALUE (# EV), VARIATION
CONTRIBUTION (# CONTRI.) AND CUMULATIVE CONTRIBUTION (# CUML.)

# PC PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
#EV 11.80 4.87 2.79 1.34 0.90 0.62 0.60 0.28 0.18 0.15
# Contirb. (%) | 49.15 2028 11.64 5.57 3.75 2.58 2.50 1.18 0.76 0.61
# Cuml. (%) 49.15 6943 81.07 86.64 9039 9297 9547 96.65 9741 98.86
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Fig. 3.

Samples of five morphotypes of marine snow particles, each distinguished by unique morphological dimensions of size, shape, and texture: Type A:

Small-sized with a moderately regular shape and tightly aggregated structure. Type B: Large with an irregular shape, significant transparency variations, and a loose
structure. Type C: Characterized by an elliptical shape. Type D: Mostly transparent with a hazy appearance, loose structure, uniform texture, and flocculent-like.
Type E: Noticeably small, with a regular and compact clustered shape, low transparency, and uniform texture. Zoom-in views are presented in the red boxes for a

more detailed illustration of the morphological differences.

points emerge at specific times. Based on this, we identified
ten distribution patterns, with three patterns in period 1, three
patterns in period 2, and four patterns in period 3.

For each pattern, we set a minimum threshold of 100 particles
per mask to ensure a sufficient amount. We generate 600 masks
for each of the ten patterns, totaling 6000 masks across all
patterns. Within each pattern, every individual mask maintains
a consistent proportion of each morphotype, ensuring unifor-
mity in the representation of marine snow particle distributions.
Across different patterns, the overall number of marine snow
particles varied significantly, reflecting the realistic abundance
from different depth intervals and seasons, thus enriching our
data set with diverse morphologies and distribution patterns
of marine snow particles. Fig. 4 shows some samples of our
data set MM-MSD. The first column shows real-world under-
water images, the second column shows marine snow masks,
and the fourth column shows marine snow images (tagged as
“postprocess results”). To intuitively show the performance of
our postprocessing for simulating underwater degradation, the
figure includes direct overlay results in the third column. As
shown, these marine snow particles appear unnatural and do
not blend well with the underwater background. Conversely,

the postprocessed images are far more natural and look like
real-captured ones.

Overall, we select 6000 real-world underwater images without
marine snow as reference images from SUN [14], UIEB [15],
and EUVP [16] that are widely used in underwater image
enhancement research. For each reference image, we apply one
marine snow mask on it to synthesize a one-to-one initial marine
snow image, then apply the proposed postprocessing to get the
refined final image. As a result, our data set consists of 6000
pairs of marine snow images and their reference images, namely,
MM-MSD.

We divide it into training, validation, and testing sets with
a ratio of 8:1:1 for future work. To preserve the balance and
utility of our data set, we ensure that the proportion of images
under each distribution pattern is consistent across the training,
validation, and testing set.

IV. METHODOLOGY IN MASDIFF

Marine snow removal poses a significant challenge due to
the diverse morphologies and distribution patterns of marine
snow particles. To tackle this issue, we propose a novel marine
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Samples of our data set MM-MSD, including real-world underwater images, marine snow masks, and marine snow images. The direct overlay results are
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Overview of the proposed MSADiff. MSADIiff is a two-stage network, which follows a diffusion model-based architecture. The MSE estimates a marine

snow mask M from the input marine snow image I, and then the marine snow remover progressively removes marine snow particles and restores the corresponding
marine snow-free image using the downsampled marine snow mask M and random noise Z;. E; denotes the output features of encoder blocks, F; denotes the

output of convolutional layers, and D; denotes the output of decoder blocks.

snow removal method—MSADIff to progressively estimate and
remove marine snow particles.

MSADIff consists of two key components: marine snow es-
timator and marine snow remover. As shown in Fig. 5, given
a marine snow image I € R"***3 ag input, the marine snow
estimator estimates a marine snow mask M € Rh*wx1 by thor-
oughly analyzing the contextual information. Then, the marine
snow remover removes the marine snow particles and restores a
corresponding marine snow-free image I e Rhxwx3, guided by
the downsampled marine snow mask M |. During the training
phase, we first train the marine snow estimator based on the

marine snow images and corresponding ground truth masks.
Once it has a strong capability for marine snow mask estimation,
we then freeze its parameters before training the marine snow
remover.

A. Marine Snow Estimator

Our marine snow estimator has an encoder-decoder architec-
ture, aiming to perceive the position of marine snow particles
for predicting a binary marine snow mask.

MSE encoder: For the encoder, we utilize the PVTv2 [22]
instead of traditional Transformer models, as its superior
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capability to capture global contextual information across vary-
ing scales. The advancement of PVTv2 facilitates the encoder
to model the context information (like scene semantics and
structure) of the input image, thus enabling focused attention
on the diverse morphologies and distribution patterns of marine
snow particles. For an input of marine snow image I € R"*w*3,
the PVTv2 encoder generates multiscale features

(B4, € RFFT T (¢, € {64,128,320,512},
i€{1,2,3,4})

from its four Transformer blocks. These features are considered
to encompass varying levels of edge, texture, and marine snow
semantic information.

MSE decoder: We build the decoder based on the encoder,
which also contains four blocks. Each block contains two
components: a convolutional layer and a marine snow-aware
enhancement (MSAE) module. The Transformer-based encoder
excels at modeling global contextual information but lacks the
ability to capture long-range dependencies. Therefore, we utilize
the convolutional layer in the decoder to extract local text details
like textures and edges through fixed receptive fields. However,
directly combining the convolutional layer with the encoder to
realize global and local feature extraction for the marine snow
estimation may face two challenges: 1) The global features
from the Transformer may be too abstract for the convolutional
decoder, leading to insufficient representation of local details.
2) The local features from the convolutional neural network
(CNN)-based decoder may struggle to integrate global context,
leading to suboptimal decoding performance and reduced esti-
mation accuracy. Therefore, we construct the MSAE module to
process and enhance the related feature representations.

Algorithmically, the MSAE module utilizes a dot product
operation of a Sigmoid layer and a separable convolutional layer
(Sigmoid ® SepConv) with aresidual structure to further process
the global spatial information for the following convolutional
layer. As we know, separable convolution in MobileNetV?2 [23]
decomposes the standard convolution into two steps: depthwise
convolution and pointwise convolution. The depthwise convo-
lution captures spatial information within each channel inde-
pendently, and the pointwise convolution combines the features
across channels, enabling the model to learn rich feature repre-
sentations. The combination with the Sigmoid activation layer
allows for a more refined and selective extraction of features
based on the importance weights assigned by the Sigmoid. Then,
the residual structure helps in better gradient flow during model
training.

As shown in Fig. 5, the multiscale features { E; }4_, obtained
by the encoder are subsequently fed into the decoder, and then,
the MSAE integrates both the {E;}?_, and the convolved fea-
tures { F; }1_, to produce the augmented features {D; }?_,. The
main process can be formulated as

D, = F; & Sigmoid(E;) ® SepConv(F;) )

where @ is element-wise summation, Sigmoid(-) is sigmoid
activation, ® is element-wise product, and SepConv(-) is sepa-
rable convolution. The multilevel augmented features vary from
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D, with spatial size (h/16) x (w/16) and channel size 320 to
D, with spatial size h X w and channel size 1. With the final
augmented features generated by the last convolutional layer, we
obtain an estimated binary mask M € h x w x 1 that pinpoints
the location of the marine snow particles.

B. Marine Snow Remover

Our marine snow remover is designed based on a pretrained
latent diffusion model (LDMs) [24], guided by the estimated
binary marine snow mask, to optimize its efficiency for marine
snow removal. We utilize the remarkable ability of LDMs to gen-
erate and reconstruct images with high fidelity, as it is essential
for accurately removing the light spots caused by diverse marine
snow particles and restoring the underlying details. On the other
hand, the model achieves better efficiency and stabilizes the
training process by using the pretrained VQGAN [25], which
helps to convert the image into a more manageable latent space.
This enhanced efficiency is of great significance when dealing
with intricate marine snow particles and diverse underwater
environments.

As shown in Fig. 5, in the process of removing marine snow,
the procedure can be divided into two stages: forward process
and reverse process. In the stage of the forward process, we first
convert marine snow-free images into encoded latent z with
the VQGAN encoder, and then, Gaussian noise with variance
B¢ € (0,1) at time ¢ is added to the encoded latent z for produc-
ing the noisy latent z;, which can be formulated as

2z =Vaz + V1 —age (3)

where € ~ N(0, I) with I denoting identity matrix, oy = 1 — 3,
anda; = H';:las. When ¢ is large enough, the latent z; is nearly
a standard Gaussian distribution.

During the stage of the reverse process, we use the pretrained
VQGAN encoder to encode the marine snow image I into
the latent feature Cy. Subsequently, the estimated mask M is
downsampled to generate the reduced-resolution mask M. The
downsampled mask M and the latent feature Cy are utilized
as conditioning features to guide and facilitate the removal pro-
cess appropriately. Subsequently, the denoising network (U-Net)
takes the z; as input conditioned on the latent feature Cy and the
downsampled estimated mask M to predict a slightly less noisy
feature z;_1. The process is repeated iteratively. When ¢ reaches
0, the U-Net will generate a latent representation 2y, which can
be transformed back the pixel space by the VQGAN decoder to
yield a removal result I with high-definition texture and faithful
snow-free representation.

V. BENCHMARK
A. Methods and Experimental Setup

Implementation details: All the benchmarking experiments
are implemented using PyTorch and the training process is on
four RTX 3090 graphics processing units (GPUs). Images used
for model training are all resized to 256 x 256.

MSADIff training and inference: The MSE is trained using
binary cross-entropy loss between the ground truth mask and
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the estimated mask with a batch size of 4. We use the Adam
optimizer [26] with the mean of the gradients 8; = 0.0, the
variance of the gradients 8y = 0.9, and initialize the learning
rate o = 0.0001. The marine snow remover (utilizing Stable
Diffusion 1.7-base [24]) is finetuned on our data set for 70 k
iterations with a batch size of 4. We use the Adam optimizer [26]
with an initial learning rate of « = 0.0001. During inference, we
adopt spaced DDPM sampling [27] with 50 timesteps.

Data Sets: The training and testing data sets for the benchmark
experiments utilize the proposed MM-MSD. Additionally, we
conduct a quality assessment among the two published marine
snow image data sets (MSRBD [9] and Snowy-VAROS [11])
and our MM-MSD. The data set quality assessment is displayed
in Section V-C.

1) MSRBD [9]is generated by modeling marine snow effects

into two mathematical models and employing them on
the underwater images. It has 4600 training pairs and 800
testing pairs. Each pair consists of an underwater image
and its corresponding marine snow image.

2) Snowy-VAROS [11]is generated by extracting real marine
snow particles and applied on the synthesized underwater
image data set VAROS, comprising 3229 pairs of images
in the training set, 342 pairs in the validation set, and 370
pairs in the testing set.

3) MM-MSDfeatures five morphotypes and ten distribution
patterns of marine snow particles. The training set contains
4800 pairs of images, while the test set and validation set
contain 600 image pairs separately.

Benchmark methods: To the best of authors’ knowledge, no
open-source methods are available for marine snow removal.
Therefore, we select classic and state-of-the-art methods from
the related fields of CNN-based (UGAN [28], Water-Net [15],
FUnIE-GAN [16], NU2Net [29], U-shape [30]), and diffusion
model-based (DM_underwater [31], PA-Diff [32]) underwater
image enhancement methods, image denoising (DnCNN [33],
VDN [34], DANet [35], MPRNet [36], and Restormer [37]), and
image desnowing (DesnowNet [38], HDCW-Net [39], DDM-
SNet [40], TKL [41], and TransWeather [42]) as benchmark
methods. The two main reasons for our selection are as follows:
1) marine snow images share similar degradation characteris-
tics with normal underwater images, thus underwater image
enhancement methods are reasonable to be employed; 2) the
marine snow effects, appearing as light spots resembling noise
and veil-like blurs similar to snowflakes, may enable the use of
denoising and desnowing methods. All benchmark methods are
trained from scratch on the MM-MSD training set and tested on
the MM-MSD testing set.

B. Overall Performance

A comprehensive and fair method validation has not been
developed for evaluating marine snow removal. Therefore, in
this part, we evaluate the state-of-the-art underwater image
enhancement, denoising, and desnowing methods both quali-
tatively and quantitatively on our MM-MSD. Our qualitative
evaluation results are shown in Fig. 6 and quantitative evaluation
results are shown in Table I'V. Fig. 6(a)—(g) denotes underwater
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TABLE IV
QUANTITATIVE EVALUATION RESULTS OF UNDERWATER IMAGE
ENHANCEMENT, DENOISING, AND DESNOWING METHODS ON THE MM-MSD
TESTING SET, UTILIZING PSNR, SSIM, AND UIQM METRICS

Index Method PSNR (1) SSIM (1) | UIQM (1)
Underwater Image Enhancement Methods
(a) UGAN [28] 16.0579 0.3734 2.8037
(b) Water-Net [15] 16.6403 0.3801 2.8453
(c) FUnIE-GAN [16] 15.9476 0.3643 2.8994
(d) NU2Net [29] 16.3847 0.3687 2.7915
(e) U-shape [30] 16.2729 0.3794 2.8328
€3] DM_underwater [31] 16.1499 0.3850 2.7278
(2) PA-Diff [32] 15.9074 0.3694 2.8814
Denosing Methods
(h) DnCNN [33] 16.4263 0.3579 2.5385
(1) VDN [34] 16.5668 0.3815 2.7843
G DANet [35] 16.4153 0.3770 2.6913
(k) MPRNet [36] 16.4392 0.3622 2.5169
() Restormer [37] 16.4900 0.3629 2.5528
Desnowing Methods

(m) DesnowNet [38] 16.4638 0.3612 2.5484
(n) HDCW-Net [39] 16.5798 0.3831 2.7145
(0) DDMSNet [40] 16.6209 0.3847 2.5303
(p) TKL [41] 16.3744 0.3699 2.5974
(qQ) TransWeather [42] 16.5253 0.3721 2.7834

MSADIff (Ours) 16.8126 0.3942 2.9262

The symbol 1 indicates that higher scores correspond to better performance. The best-performing
value is highlighted in bold.

image enhancement methods, Fig. 6(h)—(1) denotes denoising
methods, and Fig. 6(m)—(q) denotes desnowing methods.
Qualitative evaluation: Upon reviewing all the results of the
removal of marine snow in Fig. 6, our method proves to be
the best of eliminating marine snow particles and their effects
and retaining the detailed information of the original scene. The
underwater image enhancement methods Fig. 6(a)—(g) also give
good results. To some extent, this can be attributed to the fact
that underwater images and marine snow images have similar
image degradation characteristics. For example, blurring caused
by light scattering, veil-like haze caused by suspended particles
in water, and various noise points caused by equipment and
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Fig. 6. Sample qualitative evaluation outcomes of underwater image enhancement, denoising, and desnowing methods on the MM-MSD testing set. Following the
indexes: Raw marine snow images, results of underwater image enhancement methods—(a) UGAN [28], (b) water-net [15], (c) FUnIE-GAN [16], (d) NU2Net [29],
(e) U-shape [30], (f) DM_underwater [31], and (g) PA-Diff [32], image denoising methods—(h) DnCNN [33], (i) VDN [34], (j) DANet [35], (k) MPRNet [36],
and (1) restormer [37], image desnowing methods—(m) DesnowNet [38], (n) HDCW-Net [39], (0) DDMSNet [40], (p) TKL [41], and (q) TransWeather [42], and
uurs MSADIff, and reference marine snow-free images.
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Fig. 7. Samples of estimated masks generated from the MSE.

bubbles. Therefore, those methods designed for degradation
characteristics perform well.

As for the denoising Fig. 6(h)—(1) and desnowing Fig. 6(m)—
(q) methods, although the desnowing methods generate images
with higher clarity, both types of methods have their limitations
to some degree. On the one hand, denoising methods are effec-
tive only for small marine snow particles but perform poorly
for larger ones. This is mainly because denoising algorithms
focus more on eliminating the random noise introduced by the
acquisition equipment. On the other hand, desnowing methods
do not perform well when handling large marine snow particles
with motion blur. This is mainly because, while these methods
are designed to remove snowflakes of various shapes, they all
neglect the snow streaks caused by the motion of snowflakes.

Focusing on each specific method, Fig. 6(h) DDMSNet [40],
Fig. 6(k) MPRNet [36], Fig. 6(m) DesnowNet [38], and Fig. 6(0)
DnCNN [33] can hardly remove the marine snow particles
because they focus more on smaller particles, exactly noise
points. Fig. 6(a) UGAN [28], Fig. 6(e) U-shape [30], Fig. 6(i)
VDN [34], Fig. 6(j) DANet [35], and Fig. 6(p) TKL [41] intro-
duce artifacts at the positions of marine snow, that is, the pixels
covered by marine snow particles are not well restored due to
their inaccurate restoring algorithms. Fig. 6(b) Water-Net [15],
Fig. 6(c) FUnIE-GAN [16], Fig. 6(f) DM_underwater [31],
Fig. 6(g) PA-Diff [32]), Fig. 6(n) HDCW-Net [39], and Fig. 6(q)
TransWeather [42] can remove marine snow particles better. In
particular, within the underwater image enhancement methods,
the results of Fig. 6(f) DM_underwater [31] look black as it
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focuses on correcting the green tone distortion to the color
cast issues. Fig. 6(g) PA-Diff [32] generates a frog-like artifact
to achieve the marine snow removal effects. The desnowing
method Fig. 6(n) HDCW-Net [39] has good performance in
removing particles with motion blur attributed to targeted pro-
cessing of snow streak artifacts.

Quantitative evaluation: For quantitative evaluation, we con-
duct two full-reference evaluation metrics, peak signal-to-
noise ratio (PSNR) and structural similarity index measure
(SSIM) [43], and a nonreference evaluation metric, under-
water image quality measure (UIQM) [44]. A higher PSNR
score indicates a closer resemblance between the result and
the reference concerning the content. A higher SSIM score
indicates a greater degree of structural and textural consistency.
A higher UIQM score indicates a closer match with human visual
perception.

Table IV presents the quantitative results of different methods
in terms of PSNR, SSIM, and UIQM on the testing set. All of
these scores are computed based on the marine snow-removal
results with the reference marine snow-free underwater images.
Among these methods, our MSADIiff achieves the best perfor-
mance on all of the evaluation metrics. In addition, the under-
water image enhancement methods perform the second best in
terms of the nonreference evaluation metric UIQM, with mod-
erate PSNR and SSIM scores, especially DM_underwater [31]
and PA-Diff [32] (g). Both denoising and desnowing methods
achieve comparable PSNR and UIQM scores, while desnowing
methods show a slight advantage in SSIM.
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Raws MSRB

Fig. 8.
Red boxes correspond to the zoomed-in patches for better comparison.

The evaluation metric scores also help explain the obvious
visual performance differences. For example, DM_underwater
(f) attains a high SSIM score, but its PSNR and UIQM values
are low. The reason may be that although it manages to remove
marine snow effects with good image structure and texture, the
unexpected black tone deteriorates the image quality. Similarly,
PA-Diff (g) introduces blurs to the results, thus leading to a
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Snowy-VAROS MM-MSD (Ours)

Sample qualitative evaluation results of MSADiff trained on different marine snow image data sets. The test images are real-world marine snow images.

decrease in both PSNR and SSIM scores. The reason for the
lower SSIM scores of denoising methods aligns perfectly with
the previous qualitative analysis. That is, denoising methods can
hardly handle large marine snow particles, so they contribute
little to the improvement of image structure and texture. Among
the desnowing methods, when comparing the performance of
DesnowNet (m) and HDCW-Net (n), HDCW-Net performs well
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TABLE V
IMPACT OF DIFFERENT TRAINING APPROACHES

Training Strategy PSNR (1) SSIM (1) UIQM (1)
Joint Training 16.6678 0.3807 2.7843
Two-Stage Training 16.8126 0.3942 2.9262

The best performance is highlighted in bold.

TABLE VI
EFFECT OF THE MSAE MODULE IN MSE

MSAE | PSNR (1) SSIM (1) UIQM (1)
X 16.2518 0.3019 2.1813
v 16.8126 0.3942 2.9262

in both SSIM and PSNR because it can handle snow streaks that
are similar to motion blur.

Ablation study: Based on the above analyses, we have identi-
fied the advantages of our method. In addition, we will demon-
strate the superiority of our method through ablation studies of
some of its modules.

1) Effect of Two-Stage Training Strategy: As mentioned

above, the training process of our MASDiff has two stages:
The first stage is to train the MSE to recognize marine
snow masks from marine snow images; the second stage
is to train the marine snow remover to remove marine
snow particles according to the mask-annotated positions.
These two stages have distinct training objectives, with the
performance of the second-stage removal dependent on
the first-stage estimation results. We conduct quantitative
comparisons of these two training strategies on the MM-
MSD data set. As shown in Table V, the two-stage training
strategy demonstrates marginally superior performance.
This discrepancy stems from the challenges in multitask
optimization: joint training forces simultaneous optimiza-
tion of two different objectives, creating gradient inter-
ference that may degrade the task. Beyond algorithmic
challenges, joint training increases GPU memory usage
and training time, so we insist on the two-stage training
strategy.

2) Effect of MSE: To display the accuracy of our MSE, we
compare some samples of the estimated masks with the
ground truth masks in Fig. 7. It is obvious that the estima-
tion results are precise with the ground truth, underscoring
the effectiveness of our estimator in accurately detecting
and positioning marine snow effects.

3) Effect of MSAE Module: To confirm and investigate the
contribution of the MSAE module in the MSE, we con-
duct an ablation study of it on the final experimental
performance, with the results presented in Table VI. As
shown in Table VI, the training of MSADiff incorporating
the MSAE module within the MSE leads to enhanced
performance. This slight difference serves to validate the
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rationale and motivation behind this module, highlighting
its effectiveness in contributing to the overall performance
improvement of MSADiff in the marine snow estimation
stage.

C. Data Set Quality Assessment

As previously emphasized, the quality of existing marine
snow image data sets significantly impacts the generalization
ability of algorithms. To prove this point and validate the supe-
riority of our data set, we comprehensively evaluate the quality
of currently available marine snow image data sets, including
MSRBD [9], Snowy-VAROS [11], and our MM-MSD.

‘We adopt a controlled evaluation framework using the MSAD-
iff model with uniform training parameters, ensuring a fair com-
parison across data sets. The model is trained on each data set
individually and tested on open-source real-world marine snow
images spanning different lighting conditions. As visualized
in Fig. 8, the MM-MSD-trained model demonstrates distinct
advantages: It effectively removes both fine granular snow and
large flocculent aggregates while preserving critical details, such
as coral textures.

Visual analysis reveals that our data set-trained model main-
tains consistent color fidelity across varying illumination sce-
narios and mitigates motion blur artifacts caused by dynamic
snow particle movements. In contrast, models trained on Snowy-
VAROS often produce over-smoothed backgrounds with resid-
ual snow clusters in shaded regions, while MSRBD-trained
models introduce slight color shifts under low-light conditions.
These qualitative disparities highlight the MM-MSD data set’s
unique strength in balancing synthetic and real-world samples,
which equips it to address complex underwater imaging chal-
lenges. Collectively, these results confirm that our MM-MSD
data set establishes a new benchmark for marine snow removal
tasks, enabling the development of robust algorithms capable of
adapting to real-world underwater environments.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this study, we propose OmniMSI, a comprehensive pipeline
for simulating marine snow images through four key steps: 1)
preparing raw marine snow particle data from EcoTaxa and
real-world underwater scenes, 2) classifying morphotypes and
analyzing spatio-temporal distribution patterns, 3) generating
diverse masks guided by ecological realism, and 4) synthesizing
authentic marine snow images with postprocessing techniques.
Researchers can flexibly apply OmniMSI to generate tailored
data sets by selecting parameters, such as ocean regions, depths,
or seasons, enabling the creation of marine snow images that
align with specific research needs. Leveraging this pipeline, we
construct MM-MSD, the first data set featuring multimorphol-
ogy marine snow particles and multidistribution patterns across
ocean conditions. To advance marine snow removal, we design
MSADIff, a diffusion-based method that integrates a MSE and
remover, achieving state-of-the-art performance in both qual-
itative and quantitative evaluations. Furthermore, we establish
a benchmark by systematically evaluating existing algorithms,
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providing critical insights into their strengths and limitations for
marine snow removal tasks.

While our work demonstrates significant progress, limitations
remain. First, OmniMSI balances realism and practicality, but
discrepancies persist between synthetic and real-world marine
snow scenarios, particularly in dynamic underwater environ-
ments. Second, the computational demands of MSADiff hin-
der real-time deployment on resource-constrained underwater
platforms. These challenges highlight opportunities for future
research. Expanding OmniMSI to incorporate advanced fluid
dynamics or light propagation models could enhance ecological
fidelity. In addition, lightweight architectures or hardware-aware
optimizations may bridge the gap between algorithmic perfor-
mance and practical applicability. Beyond technical refinements,
this work lays a foundation for interdisciplinary applications,
such as improving underwater robotic vision systems or advanc-
ing marine ecological studies through enhanced image analysis.
By addressing these directions, we aim to foster robust solutions
that empower both computational research and marine explo-
ration in complex underwater environments.
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